A Leishmania secretion system for the expression of major ampullate spidroin mimics

نویسندگان

  • Todd A Lyda
  • Elizabeth L Wagner
  • Andre X Bourg
  • Congyue Peng
  • Golnaz Najaf Tomaraei
  • Delphine Dean
  • Marian S Kennedy
  • William R Marcotte
چکیده

Spider major ampullate silk fibers have been shown to display a unique combination of relatively high fracture strength and toughness compared to other fibers and show potential for tissue engineering scaffolds. While it is not possible to mass produce native spider silks, the potential ability to produce fibers from recombinant spider silk fibers could allow for an increased innovation rate within tissue engineering and regenerative medicine. In this pilot study, we improved upon a prior fabrication route by both changing the expression host and additives to the fiber pulling precursor solution to improve the performance of fibers. The new expression host for producing spidroin protein mimics, protozoan parasite Leishmania tarentolae, has numerous advantages including a relatively low cost of culture, rapid growth rate and a tractable secretion pathway. Tensile testing of hand pulled fibers produced from these spidroin-like proteins demonstrated that additives could significantly modify the fiber's mechanical and/or antimicrobial properties. Cross-linking the proteins with glutaraldehyde before fiber pulling resulted in a relative increase in tensile strength and decrease in ductility. The addition of ampicillin into the spinning solution resulted in the fibers being able to inhibit bacterial growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks

The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We tested this assumption for the dragline silk of three co-existing Australian spiders, Argiope keyserl...

متن کامل

Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus.

Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine underg...

متن کامل

Comprehensive Proteomic Analysis of Spider Dragline Silk from Black Widows: A Recipe to Build Synthetic Silk Fibers

The outstanding material properties of spider dragline silk fibers have been attributed to two spidroins, major ampullate spidroins 1 and 2 (MaSp1 and MaSp2). Although dragline silk fibers have been treated with different chemical solvents to elucidate the relationship between protein structure and fiber mechanics, there has not been a comprehensive proteomic analysis of the major ampullate (MA...

متن کامل

Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by pr...

متن کامل

Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.

Araneoid spiders use specialized abdominal glands to produce up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode aciniform fibers (wrapping silk) and the mechanical properties of these fibers have not been characterized previously. To gain a better understanding of the molecular radiation of spider silk fibroin genes, cDNA lib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017